Name:	
Date:	

GRAPHING EXPONENTIAL & LOGARITHMIC FUNCTIONS

<u>Directions</u>: Using the parent graph of $y = e^x$, describe the transformations of each function.

1.) $f(x) = 2e^{x-8} - 5$ 2.) $f(x) = e^{2x+8} + 5$ 3.) $f(x) = -e^{x+2} + 2$

<u>Directions</u>: Using the parent graph of $y = \ln x$, describe the transformations of each function.

4.) $f(x) = \ln\left(-\frac{1}{2}x + 2\right) - 6$ 5.) $f(x) = \frac{1}{3}\ln(x - 2) - 3$ 6.) $4\ln(5x)$

Directions: Write the equation and/or the description of each function. Then graph the function if necessary.

REVIEW OF PROPERTIES OF LOGARITHMS

Directions: Write each exponential equation in logarithmic form.						
1.)	$2^4 = 16$		2.) $5^3 = 125$		3.) $3^{-2} = \frac{1}{9}$	
4.)	$7^0 = 1$		5.) $10^3 = 1000$		6.) $e^4 = 54.599$	
7.)	$8^{\frac{1}{3}} = 2$		8.) $25^{\frac{1}{2}} = 5$		9.) $2^{-1} = \frac{1}{2}$	
10.)	$e^{-2} = 0.1353$		11.) $10^{-2} = \frac{1}{100}$		12.) $3^{-3} = \frac{1}{27}$	
<u>Dire</u>	<u>ctions</u> : Write ead	ch logarithmic equ	ation in exponential fo	rm.		
13.)	$\log_2 32 = 5$		14.) log ₉ 81 = 2		15.) $\log_2 \frac{1}{4} = -2$	
16.)	$\log_5 25 = 2$		17.) $\log_{16} 4 = \frac{1}{2}$		18.) $\log_{49} 7 = \frac{1}{2}$	
19.)	log 10 = 1		20.) $\log_6 1 = 0$		21.) $\log_8 2 = \frac{1}{3}$	
22.)	$\ln 1 = 0$		23.) $\ln 5 = 1.609$		24.) $\ln \frac{1}{4} = -1.386$	
<u>Dire</u>	<u>Directions</u> : Find the value of x that makes each logarithmic equation true.					
25.)	$\log_x 25 = 2$		26.) $\log_4 2 = x$		27.) $\log_{12} x = 1$	
28.)	$\log_6 x = 2$		29.) $\log_3 x = -1$		30.) $\log \frac{1}{100} = x$	
31.)	$\log_8 64 = x$		32.) $\log_9 1 = x$		33.) $\log_x \frac{1}{125} = -3$	
Directions: Use properties of logarithms to evaluate each logarithmic expression.						
34.)	$\log_3 3^5 =$		35.) $\ln e^7 =$		36.) $\log 10^{-2} =$	
37.)	$6^{\log_6 15} =$		38.) $e^{ln12} =$		39.) $10^{\log 4} =$	
40.)	$\ln e =$		41.) log ₇ 7 =		42.) log1 =	

<u>Directions</u>: Approximate each logarithm by using the *Change-of-Base Formula* to the nearest thousandth.

43.) log ₇ 19 =	 44.) log ₈ 2 =	 45.) log ₄ 0.75 =	
46.) log ₆ 12 =	 47.) log ₁₅ 3 =	 48.) log ₂ 0.125 =	

Directions: Expand each logarithmic expression. Do not leave any exponents in your final answer.

49.)
$$\log_3(9xy^2)$$
 50.) $\log\left(\frac{100x^2}{y^3}\right)$

51.)
$$\log_4(xy^2\sqrt{z})$$
 52.) $\log_6(6x^2y)^3$

53.)
$$\log_5\left(\frac{x}{25y}\right)$$
 54.) $\log\left(\frac{10(x-1)^2}{yz^2}\right)$

Directions: Condense each logarithmic expression as a single logarithm.

55.) $2 \log_3 x + 3 \log_3 y - \log_3 z$ 56.) $\frac{1}{2} [\log_2 x - (2 \log_2 y + 3 \log_2 z)]$

57.) $\log_4 4 + \log_4 x - \frac{1}{2}\log_4 y$ 58.) $\log x - \log y - 2\log z$

59.) $2(\log x + 3\log y) - 5\log z$

60.) $\log_3 x - 2 \log_3 y + 3 \log_3 z$

APPLICATIONS & MODELS

INTEREST COMPOUNDED PERIODICALLY	INTEREST COMPOUNDED CONTINUOUSLY
$A = P\left(1 + \frac{r}{n}\right)^{nt}$	$A = Pe^{rt}$
EXPONENTIAL GROWTH	EXPONENTIAL DECAY
$y = ae^{bx}$	$y = ae^{-bx}$

<u>PART 1</u>: Find the interest and the amount for compounding periodically.

		BALANCE	EARNED INTEREST
1.)	\$1,250 at 7% annually for 3 years		
2.)	\$23,600 at 5% semi-annually for 10 years		
3.)	\$5,000 at 12% monthly for 5 years		
4.)	\$51,275 at 6.5% quarterly for 8.5 years		
PART 2: Find the interest and the amount for compounding continuously.			
		BALANCE	EARNED INTEREST

5.)	\$10,000 at 9% for 5 years	
6.)	\$240,000 at 7% for 25 years	
7.)	\$1,750 at 6.25% for 36 months	
8.)	\$17,625 at 4.5% for 7.5 years	

PART 3: Apply the appropriate formula to solve the following compound interest application problems.

- 9.) The function describing the number of a rare birds that are found in a specific region after t months is given by: $P(t) = 150e^{0.05t}$ where $t \ge 0$
 - a) What is the initial population of rare birds? Is this a situation of growth or decay?
 - b) What is the population of rare birds after 7 months?
- 10.) The population of a town is 50,000, and local authorities claim that the population is growing at an exponential rate of 4% per year, *t*.
 - a) Define the function that describes this situation:

$P(t) = _$

b) Use your function to predict the population in 25 years?

ANNUITIES

PRESENT VALUE ANNUITY	FUTURE VALUE ANNUITY
$P_n = p\left[\frac{1 - (1 + i)^{-n}}{i}\right]$	$F_n = p\left[\frac{(1+i)^n - 1}{i}\right]$
Directions: Answer each annuity application.	
1.) <i>IRA Scenario:</i> Mrs. Jones is considering two different ir	ivestment structures for her IRA.
<u>Option #1</u> : Pay \$300 each month into an account with a <u>Option #2</u> : Pay \$900 every quarter into an account with	in APR of 4.2%. an APR of 4.3%.
(a) How much would she invest in each option after 10 y	ears? Option #1 =
	Option #2 =
(b) Which option will give Mrs. Jones a better return on	her investment in thirty years?
	Option #1 =
	Option #2 =
	Best Option:
(c) Which option will give Mrs. Jones a better return on	her investment in five years?
	, Option #1 -
	Option #1 =
	Option #2 =
	Best Option:

2.) *Mortgage Scenario:* Brian is looking to buy a home and has been given the following mortgage options:

Option #1: Offers a 30 year mortgage for \$300,000 and APR 4.5% with monthly payments.

Option #2: Offers a 15 year mortgage for \$275,000 and APR 4.75% with monthly payments.

(a) What will the monthly payment be for option #1? What is the total amount of interest paid over the life of loan in option #1? What is the total amount that Brian pays over the life of the loan in option #1?

Monthly payment:

Total amount paid: _____

Total interest paid: _____

(b) What will the monthly payment be for option #2? What is the total amount of interest paid over the life of loan in option #2? What is the total amount that Brian pays over the life of the loan in option #2?

Monthly payment: _____

Total amount paid: _____

Total interest paid: _____

(c) Which option should Brian choose? Why?